MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Grain constraint and size effects in shape memory alloy microwires

Author(s)
Ueland, Stian Melhus
Thumbnail
DownloadFull printable version (6.098Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Christopher A. Schuh.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Shape memory alloys exhibit interesting and useful properties, such as the shape memory effect and superelasticity. Among the many alloy families that have been shown to exhibit shape memory properties the ones based on copper are interesting because they are relatively inexpensive and show excellent properties when made as single crystals. However, the performance of these alloys is severely compromised by the introduction of grain boundaries, to the point where they are too poor for commercial applications. This thesis studies the mechanical properties of fine Cubased wires with a bamboo microstructure, i.e., where triple junctions are absent and grain boundaries run perpendicular to the wire axis. These microwires are not single crystals, but their microstructure is not as complex as that of polycrystals either: we call this new class of shape memory alloys oligocrystals. This thesis seeks to better understand the relationship between microstructure and properties in these alloys through a combination of mechanical testing, in situ experiments and modeling. First, in situ scanning electron microscopy, together with finite element modeling, is used to understand the role of grain constraint on the martensitic transformation. Grain constraints are observed to be much less severe in oligocrystalline wires as compared to polycrystals. Oligocrystalline microwires are then thermomechanically tested and shown to exhibit excellent properties that approach those of single crystals. Next, property evolution during cycling is investigated, revealing training effects as well as fatigue life and fracture. Finally, size effects in damping and transformation morphology are studied and it is shown that a transition from a many-domain to a single domain martensite morphology takes place when the wire diameter is decreased.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 142-147).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/80893
Department
Massachusetts Institute of Technology. Department of Materials Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.