Show simple item record

dc.contributor.advisorBrian L. Wardle and Jeffrey C. Grossman.en_US
dc.contributor.authorWang, Wennieen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Materials Science and Engineering.en_US
dc.date.accessioned2013-09-24T18:22:52Z
dc.date.available2013-09-24T18:22:52Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/80904
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 51-56).en_US
dc.description.abstractAn experimental investigation was conducted to understand the non-destructive evaluation (NDE) capabilities of carbon nanotubes (CNTs) of several network architectures towards structural health monitoring (SHM). As heterogeneous composite structures become increasingly common in industry, detecting mechanical damage and damage accumulation becomes increasingly difficult as many modes of failure occur below the external surface. Traditional SHM techniques may be time consuming and costly; however, CNTs are a unique material that shows promise as a strain or damage sensor. Three different laminate samples types with various CNT network architectures were tested in open-hole tension. Samples tested were quasiisotropic carbon fiber, carbon fiber prepreg with unidirectional knocked-down CNT surface patch, and fuzzy fiber reinforced plastic (FFRP) samples, which consist of radially grown CNTs on a woven ceramic fiber substrate. Mechanical load and electrical resistance were simulataneously measured using three different probes configurations with respect to the tensile direction that measured either surface or through thickness resistance changes. Measurements were taken near and away from the stress concentration. Results indicated that different CNT network architectures influenced the consistency and efficacy of indicating damage acculumation. Changes in electrical resistance correlated strongly with sample mechanical damage accumulation for unidirectional knocked-down CNTs, but had more consistent values and readings for the FFRP samples, indicating that CNT network architecture beyond the inherent piezoresistivity of the CNT heavily influences the NDE capabilities of using CNTs as strain or damage sensors. Results also suggest that CNT network architecture must be further optimized to achieve reliable NDE and SHM, and may depend on the desired application.en_US
dc.description.statementofresponsibilityby Wennie Wang.en_US
dc.format.extent70 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMaterials Science and Engineering.en_US
dc.titleTowards structural health monitoring in carbon nanotube reinforced compositesen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.identifier.oclc858282993en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record