Show simple item record

dc.contributor.advisorAllan Myerson and Roy Welsch.en_US
dc.contributor.authorCosby, Samuel T. (Samuel Thomas)en_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2013-09-24T18:34:31Z
dc.date.available2013-09-24T18:34:31Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/80911
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering; in conjunction with the Leaders for Global Operations Program at MIT, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 83-85).en_US
dc.description.abstractProcess Analytical Technology (PAT) became a well-defined concept within the pharmaceutical industry as a result of a major initiative by the FDA called "Pharmaceutical cGMPs for the 21st Century: A Risk-Based Approach." The FDA defines PAT as "a system for designing, analyzing, and controlling manufacturing through timely measurements (i.e., during processing) of critical quality and performance attributes of raw and in-process materials and processes, with the goal of ensuring final product quality." The biotechnology industry has started incorporating PAT in manufacturing, because of regulatory pressure and because the previous blockbuster-oriented business model is becoming less viable. This thesis proposes a methodology for evaluating PAT systems and delivers guidance on how to develop and implement them to effectively manage risk in biopharmaceutical manufacturing. The methodology includes guidance regarding identifying opportunities, evaluating and implementing novel analytical technology, appropriately applying acquired data, and managing change associated with PAT implementation. Experimental results from a novel PAT system that acquires light scattering and UV absorbance data to control chromatography during large-scale manufacturing are presented as a case study. The case study follows the methodology to show how a system optimized for a laboratory can be scaled for use in biopharmaceutical manufacturing.en_US
dc.description.statementofresponsibilityby Samuel T. Cosby.en_US
dc.format.extent85 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectChemical Engineering.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleProcess Analytical Technology in biopharmaceutical manufacturingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineering
dc.contributor.departmentSloan School of Management
dc.identifier.oclc857788914en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record