Show simple item record

dc.contributor.advisorJack L. Kerrebrock.en_US
dc.contributor.authorKirchner, Jody, 1978-en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2005-08-24T20:17:49Z
dc.date.available2005-08-24T20:17:49Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/8096
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.en_US
dc.descriptionIncludes bibliographical references (p. 79-81).en_US
dc.description.abstractA primary goal in compressor design for jet engines is the reduction of size and weight. This can be achieved by increasing the work output per stage, thereby reducing the required number of stages. In this thesis, the aerodynamic design of a high speed compressor that produces a pressure ratio of 9.1:1 in only two stages (rather than the typical six or seven) is presented. This is accomplished by employing blade aspiration in conjunction with rotor counter-rotation. Aspiration has been shown to make feasible significantly increased blade loading and counter-rotation provides a means of taking full advantage of this potential throughout a multistage compressor. The aspirated counter-rotating compressor was designed using a one-dimensional stage analysis program coupled with an axisymmetric throughflow code and a quasi-three- dimensional cascade code for blade design. The design of each stage focused on maximizing pressure ratio within diffusion factor and relative inlet Mach number (i.e. shock loss) constraints. The exit angle of the first stator was optimized to maximize the pressure ratio of the counter-rotating (second) rotor. The blade design code MISES allowed for each feature of the blade sections, including aspiration, to be precisely designed for the predicted conditions. To improve the process of designing blades with MISES, extensive analysis of previously designed high-speed aspirated blades was performed to identify the relationships between various blade features.en_US
dc.description.statementofresponsibilityby Jody Kirchner.en_US
dc.format.extent87 p.en_US
dc.format.extent5273932 bytes
dc.format.extent5273691 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleAerodynamic design of an aspirated counter-rotating compressoren_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc51273175en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record