Show simple item record

dc.contributor.advisorDianne K. Newman.en_US
dc.contributor.authorKern, Suzanne Een_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Biology.en_US
dc.date.accessioned2013-09-24T19:35:06Z
dc.date.available2013-09-24T19:35:06Z
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/80985
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, June 2013.en_US
dc.description"June 2013." Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractPhenazines are redox-active small molecules produced by bacteria. Although phenazines have been studied extensively for their roles as toxins, how phenazines benefit producing organisms is still being uncovered. Pseudomonas aeruginosa is a phenazine-producing Gram-negative bacterium that inhabits soil and water, and can establish persistent infections in plants, animals, and humans. P. aeruginosa produces phenazines upon activation of its quorum-sensing system, which is involved in numerous physiological changes, including biofilm development. Phenazines have been proposed to aid catabolism of P. aeruginosa under conditions like those found in biofilms-rich in nutrients but low in suitable respiratory oxidants, e.g., oxygen and nitrate-and phenazines are known to oxidize nicotinamide adenine dinucleotides (NAD(P)H) and thereby affect biofilm structure and development. The work in this thesis demonstrates that P. aeruginosa PA14 can survive under anoxic conditions in the presence of glucose and oxidized endogenous phenazines, including pyocyanin, 1-hydroxyphenazine, and phenazine-1-carboxylic acid. Exogenous oxidants such as methylene blue, paraquat, and 2,6-anthraquinone disulphonate, do not support anaerobic survival, suggesting that phenazine survival is an evolved trait that enhances the fitness of P. aeruginosa. Phenazines enable anaerobic survival with glucose but not succinate, and pyruvate fermentation is important for this process. Phenazine redox cycling yields higher levels of ATP, likely by facilitating the oxidation of glucose to pyruvate and acetate by recycling NAD(P)H to NAD(P)+. ATP hydrolysis through the FoF1 ATPase sustains a membrane potential, which is necessary for survival. Similar results were observed for both pyruvate and arginine fermentation. Common features across these survival conditions included NADH/NAD+ ratios less than 3, a polarized membrane, and higher ATP levels than those measured in conditions that do not sustain viability. To perform this work, robust methods for quantifying NADH/NAD+ and phenazines were developed and are described herein. The findings of this thesis represent an important step forward in our understanding of how phenazines physiologically benefit the organisms that produce them. Furthermore, they point us to a more general model of survival for the opportunistic pathogen P. aeruginosa.en_US
dc.description.statementofresponsibilityby Suzanne E. Kern.en_US
dc.format.extent184 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectBiology.en_US
dc.titleConsequences of redox-active phenazines on the physiology of the opportunistic pathogen Pseudomonas aeruginosaen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc857788424en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record