Show simple item record

dc.contributor.advisorDavid Darmofal and Jaume Peraire.en_US
dc.contributor.authorOkusanya, Tolulope Olawale, 1972 -en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.date.accessioned2005-08-24T20:18:45Z
dc.date.available2005-08-24T20:18:45Z
dc.date.copyright2002en_US
dc.date.issued2002en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/8098
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.en_US
dc.descriptionIncludes bibliographical references (p. 141-152).en_US
dc.description.abstractA multilevel method for the solution of systems of equations generated by stabilized Finite Element discretizations of the Euler and Navier Stokes equations on generalized unstructured grids is described. The method is based on an elemental agglomeration multigrid which produces a hierarchical sequence of coarse subspaces. Linear combinations of the basis functions from a given space form the next subspace and the use of the Galerkin Coarse Grid Approximation (GCA) within an Algebraic Multigrid (AMG) context properly defines the hierarchical sequence. The multigrid coarse spaces constructed by the elemental agglomeration algorithm are based on a semi-coarsening scheme designed to reduce grid anisotropy. The multigrid transfer operators are induced by the graph of the coarse space mesh and proper consideration is given to the boundary conditions for an accurate representation of the coarse space operators. A generalized line implicit relaxation scheme is also described where the lines are constructed to follow the direction of strongest coupling. The solution algorithm is motivated by the decomposition of the system characteristics into acoustic and convective modes. Analysis of the application of elemental agglomeration AMG (AMGe) to stabilized numerical schemes shows that a characteristic length based rescaling of the numerical stabilization is necessary for a consistent multigrid representation.en_US
dc.description.statementofresponsibilityby Tolulope Olawale Okusanya.en_US
dc.format.extent152 p.en_US
dc.format.extent10046170 bytes
dc.format.extent10045925 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582
dc.subjectAeronautics and Astronautics.en_US
dc.titleAlgebraic multigrid for stabilized finite element discretizations of the Navier Stokes equationen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc51278971en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record