Show simple item record

dc.contributor.advisorSteven D. Eppinger and Jonathan P. How.en_US
dc.contributor.authorPrzybylko, Joshuaen_US
dc.contributor.otherLeaders for Global Operations Program.en_US
dc.date.accessioned2013-09-24T19:37:05Z
dc.date.available2013-09-24T19:37:05Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81014
dc.descriptionThesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 132-137).en_US
dc.description.abstractPublic and private timberland owners continually search for new, cost effective methods to monitor and nurture their timber stand investments. Common management tasks include monitoring tree growth and tree health, estimating timber value and preventing wildfire. Many of these tasks are both manual and costly due to the vast areas and remote locations involved. Forestry experts predict that multi-vehicle autonomous systems may enable new, cost effective methods for performing various forest management tasks[1]. However, it remains unclear how these technologies may be applied, or where to focus development efforts. This research attempts to address this gap in literature, linking state-of-the-art research in forestry management science, robotics and autonomous systems, and product design and development. This thesis begins by reviewing existing forestry management practices and discussing a number of challenges identified through industry interviews and research. Modem product design methods are reviewed, and used to generate ideas for a number of new concept systems. Three design concepts are presented as detailed case studies. The data sets, methods and proposed systems discussed in this thesis may be used to guide future research in forestry management science, and drive further innovation in the emerging field of commercial and civilian autonomous systems. Key words: Forestry Management, Forestry Science, Robotics and Autonomous Systems, Unmanned Aerial Vehicles (UAV), Unmanned Aerial Systems (UAS), Product Design and Development, Light Detection and Ranging (LiDAR)en_US
dc.description.statementofresponsibilityby Joshua Przybylko.en_US
dc.format.extent137 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectSloan School of Management.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectLeaders for Global Operations Program.en_US
dc.titleThe applications of autonomous systems to forestry managementen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.description.degreeM.B.A.en_US
dc.contributor.departmentLeaders for Global Operations Program at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division
dc.contributor.departmentSloan School of Management
dc.identifier.oclc857790224en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record