Optimizing hysteretic power loss of magnetic ferrite nanoparticles
Author(s)
Chen, Ritchie
DownloadFull printable version (5.366Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Materials Science and Engineering.
Advisor
Polina Anikeeva.
Terms of use
Metadata
Show full item recordAbstract
This thesis seeks to correlate hysteretic power loss of tertiary ferrite nanoparticles in alternating magnetic fields to trends predicted by physical models. By employing integration of hysteresis loops simulated from physical models for single-domain ferromagnets, we have identified ferrite materials optimal for remote heating. Several organometallic thermal decomposition methods were adapted to synthesize nanoparticles with anisotropy energies varying over 3 orders of magnitude and transferred into water using a high-temperature ligand exchange protocol. Furthermore, we compare nanoparticles of the same composition and size produced via different synthesis conditions and highlight differences in their materials properties. These analyses identify the synthesis conditions that yield nanoparticles with optimized magnetic properties and with some of the highest power dissipation (specific loss power) found in literature for tertiary ferrite materials.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2013. Cataloged from PDF version of thesis. "June 2013." Includes bibliographical references (p. 44-46).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Materials Science and EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Materials Science and Engineering.