MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Achieving large stable vertical displacement in surface-micromachined microelectromechanical systems (MEMS)

Author(s)
Deutsch, Erik R. (Erik Robertson), 1974-
Thumbnail
DownloadFull printable version (13.96Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Stephen D. Senturia and Rajeev Ram.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes electrostatic actuation techniques and mechanical design features for realizing large planar analog vertical travel in an electrostatically actuated diffractive mid-infrared optical device, which is robust, both to manufacture, and against pull-in during use. This device, called the Polychromator, is fabricated by polysilicon surface-micromachining and consists of many parallel elements, each 20 microns wide and a centimeter in length. Typically, achieving such a large travel would require prohibitively large gaps and actuation voltages. In order to reduce the actuation voltage and achieve greater travel before pull-in, thinner beams are used which exploit stress stiffening. This, in turn, creates a number of stress control hazards because tensile stress in one layer can induce buckling in a lower layer. These issues have been solved with detailed attention to supports and their compliance. A multi-layer nonlinear spring has been incorporated to make the device robust against pull-in. The electromechanical behavior of the device is simulated using Energy Methods, Finite Difference Methods, and the MEMCAD software. Excellent agreement between MEMCAD simulation and experimental measurements for this structure are reported. Each detail, stress control, support structure, and pull-in, must be addressed in order to achieve the combined effects of large travel, robustness against pull-in, and optically flat beams.
 
(cont.) Controlled planar actuation over a large vertical range at low applied voltages is obtained by combining a robust electromechanical design with a manufacturable surface micromachining process. Covering a centimeter square area, the 512 grating elements achieved 3.8 microns vertical displacement at 72 Volts with a 0.5 Volt standard deviation, indicating uniform performance across the device. The development of the device has led to innovations in position control, fabrication processes, device design, and device testing.
 
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.
 
Includes bibliographical references (p. 77-80).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8118
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.