MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The boundary of the Gelfand–Tsetlin graph: A new approach

Author(s)
Borodin, Alexei; Olshanski, Grigori
Thumbnail
DownloadBorodin_The boundary of the Gelfand.pdf (461.7Kb)
OPEN_ACCESS_POLICY

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike 3.0 http://creativecommons.org/licenses/by-nc-sa/3.0/
Metadata
Show full item record
Abstract
The Gelfand–Tsetlin graph is an infinite graded graph that encodes branching of irreducible characters of the unitary groups. The boundary of the Gelfand–Tsetlin graph has at least three incarnations — as a discrete potential theory boundary, as the set of finite indecomposable characters of the infinite-dimensional unitary group, and as the set of doubly infinite totally positive sequences. An old deep result due to Albert Edrei and Dan Voiculescu provides an explicit description of the boundary; it can be realized as a region in an infinite-dimensional coordinate space. The paper contains a novel approach to the Edrei–Voiculescu theorem. It is based on a new explicit formula for the number of semi-standard Young tableaux of a given skew shape (or of Gelfand–Tsetlin schemes of trapezoidal shape). The formula is obtained via the theory of symmetric functions, and new Schur-like symmetric functions play a key role in the derivation.
Description
Original manuscript December 14, 2011
Date issued
2012-05
URI
http://hdl.handle.net/1721.1/81197
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Advances in Mathematics
Publisher
Elsevier
Citation
Borodin, Alexei, and Grigori Olshanski. “The boundary of the Gelfand–Tsetlin graph: A new approach.” Advances in Mathematics 230, no. 4 6 (July 2012): 1738-1779.
Version: Original manuscript
ISSN
00018708
1090-2082

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.