Planning to Perceive: Exploiting Mobility for Robust Object Detection
Author(s)
Velez, Javier J.; Hemann, Garrett A.; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas
DownloadRoy_Planning to perceive.pdf (3.766Mb)
OPEN_ACCESS_POLICY
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
Consider the task of a mobile robot autonomously navigating through an environment while detecting and mapping objects of interest using a noisy object detector. The robot must reach its destination in a timely manner, but is rewarded for correctly detecting recognizable objects to be added to the map, and penalized for false alarms. However, detector performance typically varies with vantage point, so the robot benefits from planning trajectories which maximize the efficacy of the recognition system. This work describes an online, any-time planning framework enabling the active exploration of possible detections provided by an off-the-shelf object detector. We present a probabilistic approach where vantage points are identified which provide a more informative view of a potential object. The agent then weighs the benefit of increasing its confidence against the cost of taking a detour to reach each identified vantage point. The system is demonstrated to significantly improve detection and trajectory length in both simulated and real robot experiments.
Date issued
2011Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
Proceedings of the Twenty-First International Conference on Automated Planning and Scheduling
Publisher
AAAI Publications
Citation
Velez, Javier; Hemann, Garrett; Huang, Albert S.; Posner, Ingmar; Roy, Nicholas. ""Twenty-First International Conference on Automated Planning and Scheduling
Version: Author's final manuscript