MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Testing of a microrocket engine turbopump

Author(s)
Jamonet, Laurent, 1978-
Thumbnail
DownloadFull printable version (26.87Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Alan H. Epstein.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Advances in microfabrication suggest its application to rocket engines. A MEMS thrust chamber producing 50 N of thrust at design point was previously developed that requires propellants pressurized as high as 300 atmospheres. Hence the need for turbopumps at the MEMS scale. A demonstration microturbopump approximately 20x20x6mm in size was designed and built using silicon microfabrication technology. Nitrogen and deionized water are used as operating fluids in the turbine and in the pump respectively. The design speed is 750,000 RPM, with a 23 atmospheres pump pressure rise, and an overall 30% turbomachinery efficiency. This thesis addresses the key points of the turbopump design, modelling, fabrication, and testing. A 3D CFD simulation of the pump was run and performance predicted. Cavitation risk was shown to be small. A fabrication process flow was set up and continuously improved using the feedback from experiments. Non-destructive fabrication inspection methods were introduced. A test rig and a packaging were built, on which 13 turbopumps have been tested, 8 of them spinning. The maximum speed reached was 100,000 RPM without pump loading, and 65,000 RPM with pump loading. Structural concerns have been addressed. Rotordynamics issues have been investigated. Pumping tests were performed and have paved the way toward an effective pressure rise. The innovative rotor arrangement with coplanar pump and turbine was validated. Dual phase operation involving water and nitrogen as running fluids was achieved successfully.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.
 
Includes bibliographical references (p. 191-194).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8129
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.