MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimal deadrise hull analysis and design space study of naval special warfare high speed planning boats

Author(s)
Whalen, Todd E. (Todd Edward), 1972-
Thumbnail
DownloadFull printable version (5.074Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
J. Kim Vandiver and E. Kausel.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
United States Navy SEALs (Sea, Air, Land) frequently employ high speed planing boats (HSPBs) in the performance of their missions. Operation of these vessels in normal and adverse conditions exposes personnel to severe mechanical shock. Anecdotal evidence and recent medical studies conducted by the Naval Health Research Center show a correlation between HSPB operation and chronic and acute personnel injury. Most current research focuses on short-term solutions that reduce shock at the hull-deck and deck-seat interfaces (deck padding and suspension seats, for example). The object of this thesis is to develop an Optimal Deadrise Hull (ODH) that reduces mechanical shock where it first enters the boat, at the hull-sea interface. Planing boat hydrodynamics were reviewed and the mechanical shock environment was evaluated. The ODH analysis is performed on the MkV Special Operations Craft in order to determine the effects of hull deadrise on vertical acceleration. Finally, the results of the ODH analysis are used to perform a design space study of planing hulls in order to optimize the overall design for vertical acceleration based on hull deadrise, cruise speed, and payload weight.
Description
Thesis (S.M. in Naval Architecture and Marine Engineering)--Massachusetts Institute of Technology, Dept. of Ocean Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2002.
 
Includes bibliographical references (leaves 64-65).
 
Date issued
2002
URI
http://hdl.handle.net/1721.1/8132
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering; Massachusetts Institute of Technology. Department of Ocean Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Ocean Engineering., Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.