Show simple item record

dc.contributor.advisorH. Harry Asada.en_US
dc.contributor.authorDavenport, Clark (Clark Michael)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T17:33:40Z
dc.date.available2013-10-24T17:33:40Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81600
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 83-86).en_US
dc.description.abstractAs the workforce within manufacturing grows older, especially within aircraft manufacturing, the need for new technologies to assist workers arises. If a technology could offer improvements to an aircraft manufacturing laborer's efficiency, as well as reduce the load on his body, it could potentially see vast use. This thesis discusses a potential solution to these issues - the Supernumerary Robotic Limbs (SRL). These limbs could potentially increase the workspace of the human operator to him more efficient, as well as reduce the load on the human while he performs staining tasks. It accomplishes this by providing the worker with extra arms in the form of a wearable backpack. This thesis first evaluates how the torques imposed on a human are affected when he uses an SRL-like device to help bear a static load. It is shown that the human work load necessary to bear such a load is reduced substantially. The second focus of this thesis is the skill acquisition. A data-driven approach is taken to learn trajectories and a leader-follower coordination relationship. This is done by generating teaching data representing trajectories and coordination information with two humans, then transferring the pertinent information to a robot that assumes the role of the follower. This coordination is validated in a simple one-dimension example, and is implemented on a robot that coordinates with a human leader during a control-box wiring task.en_US
dc.description.statementofresponsibilityby Clark Davenport.en_US
dc.format.extent86 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleSupernumerary robotic limbs : biomechanical analysis and human-robot coordination Trainingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc858866910en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record