Show simple item record

dc.contributor.advisorJohn B. Heywood.en_US
dc.contributor.authorJo, Young Suken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T17:34:20Z
dc.date.available2013-10-24T17:34:20Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81606
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 61).en_US
dc.description.abstractEngine downsizing with a turbocharger has become popular these days in automotive industries. Downsizing the engine lets the engine operate in a more efficient region, and the engine boosting compensates for the power loss accompanied by downsizing. However, the use of high boost in a downsized engine is limited by knock. Changing operating parameters such as spark timing has shown to be effective in avoiding knock. However, those strategies usually deteriorate efficiency of the engine. Another method to suppress knock without lowering efficiency is to use knock resistant fuels. Among them ethanol has gotten a large attention due to its renewable characteristics. About 13.3 billion gallons of ethanol were produced in 2012, and about 99 % of them are used as fuel added to gasoline. However, the optimal use of ethanol in a spark ignited engine as a knock suppressing additive is not well quantified. Also, operation limitations of a knock free engine are not well known. The objective of this project was to determine the knock onset engine operating conditions and to explore the potential of a direct injection of ethanol enhanced fuels. An engine with a turbocharger was used to measure efficiencies of the engine over the wide range of operating points. Speed range was chosen from 1500 rpm to 3000 rpm in which vehicle is usually driven in the driving cycle. Then, knock onset of different ethanol-gasoline blends, from 0 % ethanol to 85 % ethanol contents with 91 RON gasoline, were determined. Generated engine fuel consumption maps with knock onset limits were utilized in a vehicle driving simulation tool. In a simulation, the consumption of gasoline and knock suppressing fuels was determined in different driving cycles. Finally, effects of downsizig and spark retard on ethanol fraction in the fuel were determined.en_US
dc.description.statementofresponsibilityby Young Suk Jo.en_US
dc.format.extent61 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleTurbocharged engine operations using knock resistant fuel blends for engine efficiency improvementsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc858869910en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record