MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical studies of lithium-oxygen reactions for lithium-air battery applications

Author(s)
Kwabi, David G. (David Gator)
Thumbnail
DownloadFull printable version (6.645Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Yang Shao-Horn.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Fundamentally understanding reaction mechanisms during Li-O₂ cell operation is critical for implementing Li-air batteries with high reversibility and long cycle life. In this thesis, the rotating ring disk electrode (RRDE) technique has been used to probe the influence of different electrolyte solvents on the stability of the superoxide radical produced on planar glassy carbon and Au electrodes. It was found that the fraction of oxygen reduction reaction current attributable to superoxide generation exhibits a solvent-invariant potential dependence on carbon, with a higher fraction of superoxide produced at lower discharge overpotentials. This trend is in support of a proposed growth model for different Li-O₂ morphologies, where Li-O₂ growth is governed primarily by disproportionation of superoxide at low overpotentials and direct electron transfer at high overpotentials. On Au, superoxide stability exhibits a strong solvent dependence, which can be explained in terms of the effect of the electrolyte solvent basicity on the stability of the Li+-O₂- ion pair. This study highlights the potential use of RRDE as a tool to gain insights into Li-O₂ reaction and growth mechanisms and the contribution of soluble intermediate species to parasitic reactions in practical Li-air batteries.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 61-63).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/81607
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.