Show simple item record

dc.contributor.advisorAnuradha Annaswamy.en_US
dc.contributor.authorMaldonado, Leslie Graceen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T17:34:40Z
dc.date.available2013-10-24T17:34:40Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81609
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 93-95).en_US
dc.description.abstractOne of the biggest challenges in implementing feedback control applications on distributed embedded platforms is the realization of required control performance while utilizing minimal computational and communication resources. Determining such tradeoffs between control performance (e.g., stability, peak overshoot, etc.) and resource requirements is an active topic of research in the domain of cyber-physical systems (CPS). In this thesis, a setup is considered where multiple distributed controllers communicate using a hybrid (i.e., time- and event-triggered) communication protocol like FlexRay (which is commonly used in automotive architectures). Mapping all control messages to time-triggered slots results in deterministic timing and hence good control performance, but time-triggered slots are more expensive. The event-triggered slots, while being less expensive, result in variable message delays and hence poor control performance. In order to tradeoff between cost and control performance, a number of recent papers proposed a switching scheme where messages are switched between time- and event-triggered slots based on the state of the plant being controlled. However, all of these studies were based on a monotonic approximation of the system dynamics. This while simplifying the resource dimensioning problem (i.e., the minimum number of time-triggered slots required to realize a given control performance) leads to pessimistic results in terms of usage of time-triggered communication. In this thesis, it is shown that the usage of time-triggered communication (i.e., the requirement on the minimum number of time-triggered slots for a given control performance) is reduced when an accurate, non-monotonic behavior of the system dynamics is considered in the analysis. This technique is illustrated using a number examples and a real-life case study. While the focus is on communication resources in this thesis, these results are general enough to be applied to a wide range of problems from the CPS domain.en_US
dc.description.statementofresponsibilityby Leslie Grace Maldonado.en_US
dc.format.extent95 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleBuilding blocks for co-design of controllers and implementation platforms in embedded systemsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.identifier.oclc858871740en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record