MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advances in non-planar electromagnetic prototyping

Author(s)
Ehrenberg, Isaac M
Thumbnail
DownloadFull printable version (21.61Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
Sanjay E. Sarma.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The advent of metamaterials has introduced new ways to manipulate how electromagnetic waves reflect, refract and radiate in systems where the range of available material properties now includes negative permittivity, permeability, and refractive index. While analytical and numerical tools are equipped to analyze the complex configurations of materials and geometry that constitute many proposed devices, realizations have been limited in part due to fabrication. The fabrication processes used to construct the majority of metamaterial media are optimized to produce 2D products, including printed circuit board and microfabrication techniques, making the transition from two dimensional proof-of-concept to three dimensional prototype challenging. In the last decade, several reports have documented the use of additive manufacturing to fabricate 3D electromagnetic devices, including gradient index lenses at both microwave and optical frequencies, and radio frequency lenses that attain resolution beyond the diffraction limit. Though primarily used for facsimile display models, additive manufacturing is uniquely capable of addressing the needs of 3D electromagnetic designs which incorporate non-planar geometries and material inhomogeneity. The application of additive manufacturing to functional electromagnetic devices, however, is still uncommon, as the simultaneous layering of conductive and insulating materials remains complicated. To further advance the start of the art, we report our application of additive manufacturing in conjunction with other fabrication tools to fabricate several electromagnetics devices. The first involved the design of an artificial magnetic conducting substrate to enhance UHF RFID tags in close proximity to metal surfaces, which normally detune antennas and destructively interfere with any transmitted waves. The substrate incorporates 3D metamaterial unit cells, the fabrication and assembly of which were enabled by additive manufacturing. Additive manufacturing was then used to fabricate lightweight, self-supporting interconnected metamaterial structures. These structures exhibited minimal losses, making them ideal for a plano-concave microwave lens capable of focusing at 10GHz with the highest gain measured for a metamaterial lens to date. Other achievements include the fabrication of frequency selective surfaces and antenna elements conformal to non-planar surfaces. Though many challenges remain to be overcome, it is clear that additive manufacturing has significant potential to contribute to the study and fabrication of electromagnetic elements.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 131-138).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/81697
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.