Show simple item record

dc.contributor.authorVega-Brown, Will (William Robert)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T17:47:40Z
dc.date.available2013-10-24T17:47:40Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81715
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 113-117).en_US
dc.description.abstractIn this thesis, I develop CELLO, an algorithm for predicting the covariances of any Gaussian model used to account for uncertainty in a complex system. The primary motivation for this work is state estimation; often, complex raw sensor measurements are processed into low dimensional observations of a vehicle state. I argue that the covariance of these observations can be well-modelled as a function of the raw sensor measurement, and provide a method to learn this function from data. This method is computationally cheap, asymptotically correct, easy to extend to new sensors, and noninvasive, in the sense that it augments, rather than disrupts, existing filtering algorithms. I additionally present two important variants; first, I extend CELLO to learn even when ground truth vehicle states are unavailable; and second, I present an equivalent Bayesian algorithm. I then use CELLO to learn covariance models for several systems, including a laser scan-matcher, an optical flow system, and a visual odometry system. I show that filtering using covariances predicted by CELLO can quantitatively improve estimator accuracy and consistency, both relative to a fixed covariance model and relative to carefully tuned domain-specific covariance models.en_US
dc.description.statementofresponsibilityby William Vega-Brown.en_US
dc.format.extent117 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titlePredictive parameter estimation for Bayesian filteringen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.identifier.oclc861000192en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record