Show simple item record

dc.contributor.advisorRoger Dale Kamm.en_US
dc.contributor.authorSivathanu, Viveken_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T17:49:02Z
dc.date.available2013-10-24T17:49:02Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81726
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 40-41).en_US
dc.description.abstractThis work is about the development of a physiologically relevant model of the human airway. Various factors such as the cell model, physiochemical factors such as the cell substrate properties including its stiffness, shear stress, stretch, the air-liquid interface and the biochemical factors in the medium influence the biology of the cells. The aim of this work is to closely approximate conditions in an in vivo situation by engineering the above conditions in to the in vitro platform. An assay to introduce the cell substrate properties was developed in a glass bottomed petri dish type culture as well as a microfluidic device culture. The influence of the cell substrate on airway epithelial cell monolayer formation was investigated in detail by changing the stiffness of the substrate independently by changing the gel concentration, the gel formation pH and the height of the gel from a hard substrate. Further, we found that biochemical growth factors have a huge role in cell monolayer formation. A real-time measurement of monolayer integrity using electrical resistance measurements was developed. A shear stress application platform was developed and a stretch application platform was designed. The applications of such a platform with the inclusion of various physiologically relevant factors include the study of physiologic evolution of microbes such as the influenza virus.en_US
dc.description.statementofresponsibilityby Vivek Sivathanu.en_US
dc.format.extent41 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleIn vitro models for airway epithelial cell cultureen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc861186530en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record