dc.contributor.advisor | David Hardt. | en_US |
dc.contributor.author | Bageant, Maia R. (Maia Reynolds) | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2013-10-24T18:10:23Z | |
dc.date.available | 2013-10-24T18:10:23Z | |
dc.date.copyright | 2013 | en_US |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/81732 | |
dc.description | Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 121-123). | en_US |
dc.description.abstract | Microuidic technologies show great promise in simplifying and speeding biological, medical, and fluidic tasks, but transitioning these technologies from a laboratory environment to a production environment has proven difficult. This work focuses on hot embossing as a process suitable to produce these devices. In this work, a precision micro-embossing machine capable of maintaining precise setpoints in force and temperature input as well as displaying highly linear, repeatable motion and force application is developed and characterized. Additionally, this equipment is then outfitted with additional sensors that allow for three measurements relevant to process physics and product quality to be captured: initial substrate geometry; substrate bulk deformation; and glass transition temperature of the material. These measurements can be captured in-process without modifying the production cycle. The end goal is to incorporate this precision micro-embossing machine into a micro-factory cell and to implement closed-loop cycle-to-cycle process control. | en_US |
dc.description.statementofresponsibility | by Maia R. Bageant. | en_US |
dc.format.extent | 123 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Development of a precision hot embossing machine with in-process sensing | en_US |
dc.type | Thesis | en_US |
dc.description.degree | S.M. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 858811074 | en_US |