dc.contributor.advisor | Kripa K. Varanasi. | en_US |
dc.contributor.author | Slocum, Alexander Henry, Jr | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Department of Mechanical Engineering. | en_US |
dc.date.accessioned | 2013-10-24T18:10:51Z | |
dc.date.available | 2013-10-24T18:10:51Z | |
dc.date.copyright | 2013 | en_US |
dc.date.issued | 2013 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/81736 | |
dc.description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013. | en_US |
dc.description | This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. | en_US |
dc.description | Cataloged from student-submitted PDF version of thesis. | en_US |
dc.description | Includes bibliographical references. | en_US |
dc.description.abstract | Arthroplasty, the practice of rebuilding diseased biological joints using engineering materials, is often used to treat severe arthritis of the knee and hip. Prosthetic joints have been created in a "biomimetic" manner to reconstruct the shape of the biological joint. We are at a disadvantage, however, in that metals and polymers used to replace bone and articular cartilage often wear out too soon, leading to significant morbidity. This thesis explores the use of kinetic-mimicry, instead of bio-mimicry, to design prosthetic rolling contact joints, including knee braces, limb prosthetics, and joint prostheses, with the intent of reducing morbidity and complications associated with joint/tissue failure. A deterministic approach to joint design is taken to elucidating six functional requirements for a prosthetic tibiofemoral joint based on anatomical observations of human knee kinetics and kinematics. Current prostheses have a high slide/roll ratio, resulting in unnecessary wear. A rolling contact joint, however, has a negligible slide/roll ratio; rolling contact prostheses would therefore be more efficient. A well-established four-bar linkage knee model, in a sagittal plane that encapsulates with the knee's flexion/extension degree of freedom, is used to link human anatomy to the shape of rolling cam surfaces. The first embodiment of the design is a flexure coupling-based joint for knee braces. Failure mode analysis, followed by cyclic failure testing, has shown that the prototype joint is extremely robust and withstood half a million cycles during the first round of tests. Lubrication in the joint is also considered: micro- and nano-textured porous coatings are investigated for their potential to support the formation of favorable lubrication regimes. Hydrodynamic lubrication is optimal, as two surfaces are separated by a fluid gap, thus mitigating wear. Preliminary results have shown that shear stress is reduced by more than 60% when a coating is combined with a shear thinning lubricant like synovial fluid. These coatings could be incorporated into existing joint prostheses to help mitigate wear in current technology. This thesis seeks to describe improvements to the design of prosthetic joints, both existing and future, with the intent of increasing the overall quality of care delivered to the patient. | en_US |
dc.description.statementofresponsibility | by Alexander Henry Slocum, Jr. | en_US |
dc.format.extent | 244 pages | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Mechanical Engineering. | en_US |
dc.title | Rolling contact orthopaedic joint design | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | |
dc.identifier.oclc | 859201902 | en_US |