Manufacturing conductive patterns on polymeric substrates : development of a microcontact printing process
Author(s)
Hale, Melinda (Melinda Rae)
DownloadFull printable version (71.89Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
David E. Hardt.
Terms of use
Metadata
Show full item recordAbstract
The focus of this research was to develop a process suitable for creating very high resolution conductive patterns on polymer substrates, in a way that can be scaled to high volume manufacturing. The original motivation for this work came from the problem of manufacturing electrodes on microfluidic devices (which in volume production are commonly formed from polymers), but the findings of this work also have applications in flexible electronics, optics, surface patterning, organic micromanufacturing, and photovoltaics. After an initial exploration of various micromanufacturing processes, microcontact printing (μCP) was chosen as the most promising technique for further study. By using μCP to directly pattern conductive inks, this work has demonstrated previously unachievable printing: feature sizes down to 5μm, using liquid inks on polymer substrates, with a process that can be scaled to high-volume production. An understanding of the mechanisms of direct liquid ink transfer was used to identify relevant process input and output factors, and then the process sensitivities of those factors were investigated with a careful design of experiments. From the empirical data, a process model was built with generalized variables. This model was then used to successfully predict behavior of other inks and other substrates, thus validating the model and showing that it is extendable for future work. By developing an empirically verified model of ink transfer at the micron scale, this work has enabled a process for low cost, high volume microfeature patterning over large areas on polymer substrates.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (p. 215-233).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Mechanical EngineeringPublisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.