Show simple item record

dc.contributor.advisorAlexander H. Slocum.en_US
dc.contributor.authorHeberley, Brian Douglasen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-10-24T18:13:17Z
dc.date.available2013-10-24T18:13:17Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/81753
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 439-441).en_US
dc.description.abstractThe outboard bearings that support shafts in naval ships and submarines present unique challenges to designers, shipbuilders, and operators. Such bearings must operate continuously and reliably in demanding environments at speeds that vary from below 1 rpm to well over 100 rpm. Water-lubricated bearings typically used for these applications operate hydrodynamically and are prone to adverse effects at lower speeds such as increased abrasive and adhesive wear as well as stick-slip shaft motion. This project focuses on developing a hybrid journal bearing capable of operating with hydrostatic pump pressure at lower rpm, while still maintaining the capability for hydrodynamic operation at higher rpm. Benefits of such a system include extending the periodicity between outboard bearing replacements, less abrasion and scoring damage to the propulsion shaft, and preventing stick-slip shaft motion. To enable the in-water replacement of bearings without removal of the propulsion shaft, a partial arc (<180 degree wrap) configuration is required. This partial arc constraint introduces several unique manufacturing difficulties. To address this, a novel manufacturing process has been developed that enables the rapid fabrication of high precision bearings with diameter and roundness errors of less than 0.001" (25.4 microns) on a nominal diameter of 3.24" as measured with a Coordinate Measuring Machine - greatly exceeding the published tolerances of conventional methods. A unique experimental test rig was designed and built in order to measure the performance of 15 different prototype bearing designs. The rig is capable of submerged bearing testing in both hydrostatic and hydrodynamic modes of operation, with fundamental parameters such as speed, torque, loads, pressures, flow rates, and shaft position recorded. The operating characteristics of the bearings were then analyzed to identify key features and variables affecting bearing performance. Certain bearing designs were found to be inherently stable for side loading conditions, without the use of compensation typically used in hydrostatic bearings. This finding led to bearings designed with simplified hydrostatic features and fluid supply systems. Such designs were found to have minimal degradation in hydrodynamic performance, making them particularly suitable for use as hybrid bearings. The key design drivers identified in this work are combined with ancillary factors to discuss the feasibility of hybrid bearings for use in marine applications.en_US
dc.description.statementofresponsibilityby Brian Douglas Heberley.en_US
dc.format.extent441 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleAdvances in hybrid water-lubricated journal bearings for use in ocean vesselsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc860902486en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record