MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compressive phase retrieval

Author(s)
Tian, Lei, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (10.31Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Mechanical Engineering.
Advisor
George Barbastathis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recovering a full description of a wave from limited intensity measurements remains a central problem in optics. Optical waves oscillate too fast for detectors to measure anything but time{averaged intensities. This is unfortunate since the phase can reveal important information about the object. When the light is partially coherent, a complete description of the phase requires knowledge about the statistical correlations for each pair of points in space. Recovery of the correlation function is a much more challenging problem since the number of pairs grows much more rapidly than the number of points. In this thesis, quantitative phase imaging techniques that works for partially coherent illuminations are investigated. In order to recover the phase information with few measurements, the sparsity in each underly problem and ecient inversion methods are explored under the framework of compressed sensing. In each phase retrieval technique under study, diffraction during spatial propagation is exploited as an effective and convenient mechanism to uniformly distribute the information about the unknown signal into the measurement space. Holography is useful to record the scattered field from a sparse distribution of particles; the ability of localizing each particles using compressive reconstruction method is studied. When a thin sample is illuminated with partially coherent waves, the transport of intensity phase retrieval method is shown to be eective to recover the optical path length of the sample and remove the eect of the illumination. This technique is particularly suitable for X-ray phase imaging since it does not require a coherent source or any optical components. Compressive tomographic reconstruction, which makes full use of the priors that the sample consists of piecewise constant refractive indices, are demonstrated to make up missing data. The third technique, known as the phase space tomography (PST), addresses the correlation function recovery problem. Implementing the PST involves measuring many intensity images under spatial propagation. Experimental demonstration of a compressive reconstruction method, which finds the sparse solution by decomposing the correlation function into a few mutually uncorrelated coherent modes, is presented to produce accurate reconstruction even when the measurement suers from the 'missing cone' problem in the Fourier domain.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 129-138).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/81756
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.