Show simple item record

dc.contributor.authorSmith, Albert A.
dc.contributor.authorCorzilius, Bjorn
dc.contributor.authorGriffin, Robert Guy
dc.date.accessioned2013-11-12T13:57:44Z
dc.date.available2013-11-12T13:57:44Z
dc.date.issued2012-08
dc.date.submitted2012-04
dc.identifier.issn00219606
dc.identifier.issn1089-7690
dc.identifier.urihttp://hdl.handle.net/1721.1/82077
dc.description.abstractFor over five decades, the solid effect (SE) has been heavily utilized as a mechanism for performing dynamic nuclear polarization (DNP). Nevertheless, it has not found widespread application in contemporary, high magnetic field DNP experiments because SE enhancements display an ω[−2 over 0] field dependence. In particular, for nominally forbidden zero and double quantum SE transitions to be partially allowed, it is necessary for mixing of adjacent nuclear spin states to occur, and this leads to the observed field dependence. However, recently we have improved our instrumentation and report here an enhancement of ɛ = 91 obtained with the organic radical trityl (OX063) in magic angle spinning experiments performed at 5 T and 80 K. This is a factor of 6-7 higher than previous values in the literature under similar conditions. Because the solid effect depends strongly on the microwave field strength, we attribute this large enhancement to larger microwave field strengths inside the sample volume, achieved with more efficient coupling of the gyrotron to the sample chamber. In addition, we develop a theoretical model to explain the dependence of the buildup rate of enhanced nuclear polarization and the steady-state enhancement on the microwave power. Buildup times and enhancements were measured as a function of [superscript 1]H concentration for both trityl and Gd-DOTA. Comparison of the results indicates that for trityl the initial polarization step is the slower, rate-determining step. However, for Gd-DOTA the spread of nuclear polarization via homonuclear [superscript 1]H spin diffusion is rate-limiting. Finally, we discuss the applicability of the solid effect at fields > 5 T and the requirements to address the unfavorable field dependence of the solid effect.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB002804)en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grant EB002026)en_US
dc.language.isoen_US
dc.publisherAmerican Institute of Physics (AIP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4738761en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceMIT web domainen_US
dc.titleSolid effect in magic angle spinning dynamic nuclear polarizationen_US
dc.typeArticleen_US
dc.identifier.citationCorzilius, Bjorn, Albert A. Smith, and Robert G. Griffin. “Solid effect in magic angle spinning dynamic nuclear polarization.” The Journal of Chemical Physics 137, no. 5 (2012): 054201. © 2012 American Institute of Physicsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistryen_US
dc.contributor.departmentFrancis Bitter Magnet Laboratory (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorCorzilius, Bjornen_US
dc.contributor.mitauthorSmith, Albert A.en_US
dc.contributor.mitauthorGriffin, Robert Guyen_US
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsCorzilius, Bjorn; Smith, Albert A.; Griffin, Robert G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-1589-832X
mit.licensePUBLISHER_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record