Show simple item record

dc.contributor.advisorRobert W. Field.en_US
dc.contributor.authorColombo, Anthony P. (Anthony Paul)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2013-11-18T17:35:07Z
dc.date.available2013-11-18T17:35:07Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82169
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 131-138).en_US
dc.description.abstractThe chirped-pulse millimeter-wave (CPmmW) technique is applied to transitions between Rydberg states, and calcium atoms are used as the initial test system. The unique feature of Rydberg{Rydberg transitions is that they have enormous electric dipole transition moments: ~5 kiloDebye at n* ~45, where n* is the eective principal quantum number. After polarization by a mm-wave pulse in the 70{84 GHz frequency region, the excited transitions re-radiate free induction decay (FID) at their resonant frequencies, and the FID is heterodyne-detected by the CPmmW spectrometer. Data collection and averaging are performed in the time domain. The spectral resolution is ~100 kHz. Because of the large transition dipole moments, the available mm-wave power is sucient to polarize the entire bandwidth of the spectrometer (12 GHz) in each pulse, and high-resolution survey spectra may be collected. Both absorptive and emissive transitions are observed, and they are distinguished by the phase of their FID relative to that of the excitation pulse. With the combination of the large transition dipole moments and direct monitoring of transitions, dynamics are observed, such as transient nutations from the interference of the excitation pulse with the polarization that it induces in the sample. Transient nutations also provide information about the sample, such as the dipole moment and the number density of Rydberg states. Since the waveform produced by the mm-wave source may be precisely controlled, states with high angular momentum may be populated by a sequence of pulses while recording the results of these manipulations in the time domain. Also, the superradiant decay of the Rydberg sample is probed both directly through FID and indirectly using photon echoes. Prospects for further manipulations, such as adiabatic rapid passage, composite pulses, and optical/mm-wave stimulated Raman adiabatic passage, are evaluated. The application of the CPmmW technique to transitions between Rydberg states of molecules is discussed.en_US
dc.description.statementofresponsibilityby Anthony P. Colombo.en_US
dc.format.extent138 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleChirped-pulse millimeter-wave spectroscopy, dynamics, and manipulation of Rydberg-Rydberg Transitionsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc861604980en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record