Show simple item record

dc.contributor.advisorTomás Palacios.en_US
dc.contributor.authorZhang, Yuhao, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T17:36:25Z
dc.date.available2013-11-18T17:36:25Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82179
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from student-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 92-98).en_US
dc.description.abstractThis thesis is divided in two parts. First, self-consistent electro-thermal simulations have been performed for single finger and multi-finger GaN-based vertical and lateral power transistors and were validated with experimental DC characteristics. The models were used to study the thermal performance of GaN-based vertical metal oxide semiconductor field-effect transistors (MOSFETs) and the lateral high electron mobility transistors (HEMTs) designed for different breakdown voltage application and at different size scaling levels. The comparison between two structures revealed that the vertical MOSFETs have the potential to achieve an up to 50% higher thermal performance, especially for higher breakdown voltage and higher size scaling level designs. Second, normally-off lateral MOS-HEMTs were developed by the combination of fluorine plasma treatment and high-temperature gate oxide deposition. Record performances have been achieved for the fluorinated MOS-HEMTs with a threshold voltage >3.5 V, a low on-resistance ~ 2 m[Omega]·cm2, a small threshold voltage hysteresis ~0.15 V, high enhancement-mode channel mobility ~ 1000 cm2V-1s-1, a breakdown voltage ~ 780 V, no current collapse and a stability with 24 h continuous on-state operation at 250 oC. In addition, an analytical model for the threshold voltage of fluorinated MOS-HEMTs was established for the first time, to enable accurate design and engineering of the threshold voltage for MOS-HEMTs. This novel technology has been demonstrated as promising to fabricate high-performance normally-off MOS-HEMTs.en_US
dc.description.statementofresponsibilityby Yuhao Zhang.en_US
dc.format.extent98 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleSimulation and fabrication of GaN-based vertical and lateral normally-off power transistorsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc861974857en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record