MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mathematics
  • Mathematics - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Mathematics
  • Mathematics - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mathematical modeling of shock induced martensitic phase transitions

Author(s)
Weatherwax, John Lloyd, 1973-
Thumbnail
DownloadFull printable version (8.995Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Rodolfo Ruben Rosales.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Recently Bruno and Vaynblat introduced a new mathematical model to describe shock induced martensitic phase transitions. This model is much simpler than prior ones -- requiring, essentially, no quantities that cannot be measured directly. Nevertheless, its predictions are in very good agreement with the experimental results. In the calculations that Bruno and Vaynblat did to match their model against experiments, they simplified the dynamics - replacing rarefaction waves by "rarefaction discontinuities". In this thesis we implement the Bruno-Vaynblat model without any such simplifications. In the process of doing this, a new numerical method for nonlinear hyperbolic conservation laws with phase transitions is developed. Furthermore, in order to improve the quantitative agreement with experiments, several extensions of the Bruno-Vaynblat model are introduced and studied. These include the addition of dissipative effects, and the introduction of a modification to the equation of state (for the Austenite phase) near the critical transition pressure.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.
 
Includes bibliographical references (p. 123-129).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/8223
Department
Massachusetts Institute of Technology. Dept. of Mathematics.
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Mathematics - Ph.D. / Sc.D.
  • Mathematics - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.