Show simple item record

dc.contributor.advisorTian Tian.en_US
dc.contributor.authorLiu, Yang, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Mechanical Engineering.en_US
dc.date.accessioned2013-11-18T19:05:45Z
dc.date.available2013-11-18T19:05:45Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82299
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 107-109).en_US
dc.description.abstractNowadays, a rapid growth of internal combustion (IC) engines is considered to be a major contributor to energy crisis. About 20% of the mechanical loss in internal combustion engines directly goes to the friction loss between piston ring pack and liner finish. A twin-land oil control ring (TLOCR) deterministic model was developed by Chen et al. and it helps the automotive companies investigate the effects of liner finish, rings, and lubricants on friction and oil control of the TLOCR [2]. This work focuses on application of the TLOCR model and extension of the deterministic model to the top two rings. First, there are some practical challenges in the application of Chen's TLOCR deterministic model. Due to different wear condition on the same liner, surface roughness varies from spot to spot. A small patch of measurement cannot provide enough information and the change of plateau roughness makes the contact model unreliable. As a result, a multi-point correlation method was proposed to combine the information of different spots from the same liner and this method was shown to give better match to the experimental results. A top-two-ring lubrication cycle model was developed based on the multiphase deterministic model by Li. et al [30] and previous top-two-ring lubrication model by Chen. Et al [2][31]. The model is composed with two parts. First, the deterministic model is used to generate a correlation between the hydrodynamic pressure/friction and the minimum clearance with prescribed oil supply from the deterministic oil control ring model. It was found that within reasonable accuracy, the gas pressure effect on the hydrodynamic lubrication of the top two rings can be decoupled from the hydrodynamic lubrication. Thus, only single-phase deterministic model was needed to generate the correlation. This decoupling significantly reduces the computation time. Then, a cycle model was developed utilizing the correlation of hydrodynamic pressure/friction and the minimum clearance. The cycle model considers the effect of gas pressure variations in different ring pack regions as well as the dynamic twist of the top two rings. Finally, the models were used to examine the friction and lubrication of three different liner finishes in an actual engine running cycle.en_US
dc.description.statementofresponsibilityby Yang Liu.en_US
dc.format.extent109 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleDeveloping an approach utilizing local deterministic analysis to predict the cycle friction of the piston ring-pack in internal combustion enginesen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc861351880en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record