Show simple item record

dc.contributor.advisorRichard P. Binzelen_US
dc.contributor.authorRuprecht, Jessica Dawnen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences.en_US
dc.date.accessioned2013-11-18T19:05:59Z
dc.date.available2013-11-18T19:05:59Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82301
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 43-45).en_US
dc.description.abstractIn this thesis two separate projects are investigated, a stellar occultation by 2060 Chiron and rotationally resolved spectra of 1 Ceres. On 29 November 2011 UT, 2060 Chiron occulted a 14-mag star; data were successfully obtained at the 3-m IRTF on Mauna Kea and 2-m Faulkes North Telescope at Haleakala. The IRTF lightcurve shows a solid-body detection of Chiron's nucleus with a chord lasting 16.04 seconds, corresponding to a chord length of 158±14 km. Symmetric, dual extinction features in the Faulkes light curve indicate the presence of optically thick material roughly 300 km from the body midpoint. The duration of the features indicates a ~ 3 km feature separated by 10-14 km from a second - 7 km feature. The symmetry, optical thickness, and narrow size of these features allows for the intriguing possibility of a near-circular arc or shell of material. Rotationally resolved spectra of Ceres in the 0.43-0.85 micron range were observed using the DeVeny spectrograph on the Perkins 72-inch telescope at Lowell Observatory. Spectral differences as a function of phase were investigated. It is concluded that Ceres' surface is uniform at the 1% level at visible wavelengths. Additionally, the 0.6 and 0.67 pm features reported by Vilas and McFadden [1992] and Fornasier et al. [1999] are not seen at any phase at the 1% level.en_US
dc.description.statementofresponsibilityby Jessica Dawn Ruprecht.en_US
dc.format.extent45 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectEarth, Atmospheric, and Planetary Sciences.en_US
dc.titleAstronomical studies of solar system bodies 2060 Chiron and 1 Ceresen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
dc.identifier.oclc861495755en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record