MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Theses - Dept. of Chemistry
  • Chemistry - Ph.D. / Sc.D.
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Structural studies of allosteric regulation in the class Ia Ribonucleotide reductase from Escherichia coli

Author(s)
Zimanyi, Christina Marie
Thumbnail
DownloadFull printable version (34.07Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Chemistry.
Advisor
Catherine Drennan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication and repair. The E. coli class Ia enzyme requires two subunits to catalyze the radical-based reduction reaction. [beta]2 houses a diferric-tyrosyl radical cofactor and [alpha]2 contains the active site and two allosteric effector binding sites. Allosteric control of RNR fine-tunes both the relative ratios (via substrate specificity regulation) and the total amount (via activity regulation) of deoxyribonucleotides (dNTPs) in the cell. The molecular basis of this regulation has been enigmatic, largely due to a lack of structural information about how the [alpha]2 and [beta]2 subunits interact. Here, we present the structure of a complex between the [alpha]2 and [beta]2 subunits in the presence of negative activity effector dATP, revealing an [alpha]4[beta]4 ring-like structure. Using electron microscopy (EM), small-angle X-ray scattering (SAXS), and analytical ultracentrifugation (AUC) we show how activity regulation is achieved by modulating the distributions of active [alpha]2[beta]2 and inhibited [alpha]4[beta]4, an interconversion that requires dramatic subunit rearrangements. The X-ray crystal structure of the dATP-inhibited RNR and a second structure obtained using a mechanism based inhibitor reveal that [alpha]4[beta]4 rings can interlock to form an ([alpha]4[beta]4)2 megacomplex. We use SAXS to understand the solution conditions that contribute to the observed concatenation and present a mechanism for the formation of these unusual structures. We also present the first X-ray crystal structures of [alpha]2 with ATP or dATP bound at both allosteric sites, and discuss how observed differences in their binding influence the modulation between [alpha]2[beta]2 and [alpha]4[beta]4. Finally, we present structures that comprise a full set of cognate substrate/specificity effector pairs bound to the E. coli class Ia RNR. These structures allow us to describe how binding of dNTP effectors at the specificity site promotes binding of a preferred substrate. With these structural data, we describe in molecular detail, how the binding of allosteric effectors influences RNR activity and substrate specificity.
Description
Thesis (Ph. D. in Biological Chemistry)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.
 
Cataloged from PDF version of thesis. Vita.
 
Includes bibliographical references.
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82330
Department
Massachusetts Institute of Technology. Department of Chemistry.
Publisher
Massachusetts Institute of Technology
Keywords
Chemistry.

Collections
  • Chemistry - Ph.D. / Sc.D.
  • Chemistry - Ph.D. / Sc.D.

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.