Show simple item record

dc.contributor.advisorJeremiah A. Johnson.en_US
dc.contributor.authorBurts, Alan O. (Alan Omar)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Chemistry.en_US
dc.date.accessioned2013-11-18T19:10:11Z
dc.date.available2013-11-18T19:10:11Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82334
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 41-47).en_US
dc.description.abstractDeveloping a modular synthetic route to a combinatorial library of functional nanoparticles for applications like drug delivery is one of the main interests of our group. To this end, we have envisioned a novel nanoparticle architecture called a brush-arm star polymer (BASP), which has polymer brushes on the periphery shielding the core. Such nanoparticles were synthesized by, first, "graft-through" ring-opening metathesis polymerization (ROMP) of a norbornene-macromonomer to create the brush-arms, and second, cross-linking the arms with a bis-norbornene cross-linker to afford star polymers via the "arm-first" star polymer method. Functionality can be installed into the macromonomer (MM) or crosslinker preand post-polymerization. We took advantage of the highly efficient third-generation Grubbs catalyst to polymerize a polyethylene glycol (PEG) macromonomer (MM) and a bisnorbornene nitrobenzyloxycarbonyl (NBOC) photocleavable cross-linker to cross-link the brush-arms, which led to low-dispersity (Đ </=1.23) core-degradable BASPs. Controlled degradation of these star polymers was achieved by UV irradiation (365 nm). Next, a novel branched norbornene-polystyrene (PS)-polylactide (PLA)-MM was used to create pseudo-alternating copolymers and miktoarm-BASPs. Transmission electron miscroscopy (TEM) of these star polymers revealed nanoparticles with segregated domains. Also, new cross-linkers were explored containing two different bis-norbornene reversible addition-fragmentation chain-transfer (RAFT) agents. A more flexible RAFT initiator crosslinker led to high-dispersity (Đ >\=1.52) BASPs, while the more rigid RAFT initiator crosslinker led to low-dispersity (Đ </=1.05) BASPs. Finally, doxorubicin-loaded, photocleavable drug vector BASPs were synthesized from azide-functionalized BASPs. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) was utilized to covalently link doxorubicin to the azide BASPs, post-polymerization. These BASPs degraded and simultaneously released their drug payload upon UV irradiation. MTT assays were conducted with these nanoparticles on MCF-7 human breast cancer cells and were shown to be non-toxic before UV irradiation and toxic afterward.en_US
dc.description.statementofresponsibilityby Alan O. Burts.en_US
dc.format.extent47 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleDevelopment of novel polymeric nanoparticles with tailored architectures and functionalities/en_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc861621490en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record