Show simple item record

dc.contributor.advisorConstantinos Daskalakis.en_US
dc.contributor.authorCai, Yang, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:11:25Z
dc.date.available2013-11-18T19:11:25Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82344
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 168-175).en_US
dc.description.abstractA modern engineering system, e.g. the Internet, faces challenges from both the strategic behavior of its self-interested participants and the inherent computational intractability of large systems. Responding to this challenge, a new field, Algorithmic Mechanism Design, has emerged. One of the most fundamental problems in this field is How to optimize revenue in an auction? In his seminal paper [Mye81], Myerson gives a partial solution to this problem by providing a revenue-optimal auction for a seller who is looking to sell a single item to muLtiple bidders. Extending this auction to simultaneously selling multiple heterogeneous items has been one of the central open problems in Mathematical Economics. We provide such an extension that is also computationally efficient. Our solution proposes a novel framework for mechanism design by reducing mechanism design problems (where one optimizes an objective function on "rational inputs" ) to algorithm design problems (where one optimizes an objective function on "honest inputs"). Our reduction is generic and provides a framework for many other mechanism design problems.en_US
dc.description.statementofresponsibilityby Yang Cai.en_US
dc.format.extent175 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleMechanism design : a new algorithmic frameworken_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc861700986en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record