Two-dimensional materials for ubiquitous electronics
Author(s)
Yu, Lili, Ph. D. Massachusetts Institute of Technology
DownloadFull printable version (23.76Mb)
Alternative title
2-dimensional materials for ubiquitous electronics
2D materials for ubiquitous electronics
Electronic applications of two-dimensional materials
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Tomás Palacios.
Terms of use
Metadata
Show full item recordAbstract
Ubiquitous electronics will be a very important component of future electronics. However, today's approaches to large area, low cost, potentially ubiquitous electronic devices are currently dominated by the low mobility of amorphous silicon and organic semiconductor. Two-dimensional materials are good candidates for ubiquitous electronics because of their excellent properties such as transparency, flexibility, high mobility and low cost. This thesis focused on the development of the first devices and circuits based on transition metal dichalcogenides (TMDs), a family of two dimensional semiconductors. The transport properties of exfoliated few layer flakes MoS2 and chemical vapor deposition (CVD) grown single layer large area MoS2 are systematically studies. Integrated devices and circuits based on large-scale single-layer MoS2 grown by CVD are demonstrated for the first time. The transistors fabricated on this material demonstrate excellent characteristics such as record mobility for CVD MoS 2, ultra-high on/off current ratio, record current density and GHz RF performance. The demonstration of both digital and analogue circuits shows the remarkable capability of this single- molecular- layer thick material for mixed-signal applications, offering scalable new materials that can combine silicon-like performance with the mechanical flexibility and integration versatility of organic semiconductors.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. "June 2013." Title as it appears in MIT Commencement Exercises program, June 2013: Electronic applications of two-dimensional materials. Cataloged from PDF version of thesis. Includes bibliographical references (p. 102-109).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.