Show simple item record

dc.contributor.advisorElfar Adalsteinsson.en_US
dc.contributor.authorChatnuntawech, Itthien_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:15:32Z
dc.date.available2013-11-18T19:15:32Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82376
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 77-80).en_US
dc.description.abstractMagnetic resonance imaging (MRI) is a medical imaging technique that is used to obtain images of soft tissue throughout the body. Since its development in the 1970s, MRI has gained tremendous importance in clinical practice because it can produce high quality images of diagnostic value in an ever expanding range of applications from neuroimaging to body imaging to cancer. By far the dominant signal source in MRI is hydrogen nuclei in water. The presence of water at high concentration (-50M) in body tissue, combined with signal contrast modulation induced by the local environment of water molecules, accounts for the success of MRI as a medical imaging modality. As opposed to conventional MRI, which derives its signal from the water component, magnetic resonance spectroscopy (MRS) acquires the magnetic resonance signal from other chemical components, most frequently various metabolites in the brain, but also signals from tumors in breast and prostate. The spectroscopic signal arises from low concentration (-1 - 10mM) compounds, but in spite of the challenges posed by the resulting low signal-to-noise ratio (SNR), the development of MRS is motivated by the desire to directly observe signal sources other than water. The combination of MRS with spatial encoding is called magnetic resonance spectroscopic imaging (MRSI). MRSI captures not only the relative intensities of metabolite signals at each voxel, but also their spatial distributions. While MRSI has been proven to be clinically useful, it suffers from fundamental tradeoffs due to the inherently low SNR, such as long acquisition time and low spatial resolution. In this thesis, techniques that combine benefits from both model-based reconstruction methods and regularized reconstructions with prior knowledge are proposed and demonstrated for MRSI. These methods address constraints on acquisition time in MRSI by undersampling data during acquisition in combination with improved image reconstruction methods.en_US
dc.description.statementofresponsibilityby Itthi Chatnuntawech.en_US
dc.format.extent80 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleModel-based reconstruction of magnetic resonance spectroscopic imagingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862074792en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record