Show simple item record

dc.contributor.advisorVladimir Stojanović.en_US
dc.contributor.authorChen, Yu-Hsin, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:16:00Z
dc.date.available2013-11-18T19:16:00Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82380
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 59-61).en_US
dc.description.abstractMonolithically-integrated optical link is a disruptive technology which has the promising potential to remove memory bandwidth bottleneck in the deep multicore regime. Although with the advantages of high bandwidth-density and energy-efficiency, it comes with design challenges from device, architecture and system perspectives. High thermal sensitivity of the essential optical ring resonator imposes constraints on the applicability of optical links in the electro-optical systems. To investigate the thermal dynamics as well as to develop advanced ring thermal-tuning mechanisms, real-time thermal monitoring at design stage is required. In this work we propose a thermal simulation platform which integrates system modeling aspects including the high-level architectural performance model, the physical device evaluation model, and the thermal analysis model. By introducing the compact thermal model with linear transient thermal analysis solver, system thermal dynamics can be monitored at high efficiency. We demonstrate the temperature profile of a multi-core microprocessor system running real workloads. The evaluation results show the system thermal dependence on the manufacturing process, circuit thermal crosstalk and integrated ring heater efficiency.en_US
dc.description.statementofresponsibilityby Yu-Hsin Chen.en_US
dc.format.extent61 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleInvestigating thermal dependence on monolithically-integrated photonic interconnectsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862075006en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record