Show simple item record

dc.contributor.advisorDina Katabi.en_US
dc.contributor.authorShi, Lixin, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:17:03Z
dc.date.available2013-11-18T19:17:03Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82388
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 77-81).en_US
dc.description.abstractThe sparse Fourier transform leverages the intrinsic sparsity of the frequency spectrum in many natural applications to compute the discrete Fourier Transform (DFT) in sub-linear time. Consequently, it has the potential to enable Big Data applications. In this thesis, we focus on extending the sparse Fourier transform (sparse FFT) to two imaging applications: 4D Light Field and Magnetic Resonance Spectroscopy. Directly applying sparse FFT to these applications however will not work. We need to extend the sparse FFT algorithm to address the following challenges: First, both applications are sample-intensive. It is time consuming, costly, and difficult to acquire samples. So, we need a new sparse FFT algorithm that minimizes the number of required input samples instead of purely focusing on the running time. Second, for these applications the spectra are not very sparse in the discrete Fourier domain. The sparsity is much greater in the continuous Fourier domain. Hence, we need a new sparse FFT algorithm that can leverage the sparsity in the continuous domain as opposed to the discrete domain. In this thesis, we design a sparse FFT algorithm suitable for our imaging applications. Our algorithm contains two phases: it first reconstructs a coarse discrete spectrum and then refines it using gradient descent in the continuous Fourier domain. In our experiments, we showed high-quality reconstruction of 4D light field with only 10% 20% of the samples, and a reduction of the MRS acquisition time by a factor of 3x 4x.en_US
dc.description.statementofresponsibilityby Lixin Shi.en_US
dc.format.extent81 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleImaging applications of the sparse FFTen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862076146en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record