Show simple item record

dc.contributor.advisorJesús A. del Alamo.en_US
dc.contributor.authorGuo, Luke (Luke W.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:17:10Z
dc.date.available2013-11-18T19:17:10Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82389
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 55-57).en_US
dc.description.abstractFor decades, the scaling of silicon CMOS has brought impressive growth to the semiconductor industry, as well as a wealth of technological innovations. However, the continued scaling of CMOS devices to the nanometer regime is now threatened by intrinsic limitations to the use of silicon as the channel material. Hence, there is a strong interest in III-V semiconductor materials to replace silicon as the channel material as a result of their outstanding electron transport properties. While III-V materials have demonstrated impressive n-channel field-effect transistors (FETs), the same success has not yet been translated to the development of a high-performance III-V pchannel FET. This is because while many III-V's have high electron mobilities, they generally have very poor hole mobilities. The development of a high-performance III-V p-channel FET is critical to the realization of a future-generation III-V CMOS architecture. Among the III-Vs, the antimonides have the highest hole mobilities. This makes them attractive for developing a 111-V p-channel FET. This thesis examines the use of process-induced uniaxial strain combined with biaxial strain introduced during growth of the heterostructure as an approach to enhance antimonide-based FETs. Using a compressively stressed silicon nitride layer to induce uniaxial strain in the device, stressed devices with an InGaSb channel were fabricated and compared with unstressed devices processed in parallel. Enhancements of >50% in the intrinsic transconductance were observed as well as reductions of >30% in the source-drain resistance. This work illustrates the effectiveness of uniaxial strain in improving the performance of antimonide FETs.en_US
dc.description.statementofresponsibilityby Luke Guo.en_US
dc.format.extent57 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleEnhancement of antimonide-based p-channel quantum-well field effect transistors using process-induced sprainen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862076196en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record