Optical domain subsampling for data-efficient optical coherence tomography (OCT)
Author(s)
Siddiqui, Meena
DownloadFull printable version (11.79Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Benjamin J. Vakoc.
Terms of use
Metadata
Show full item recordAbstract
Recent advances in optical coherence tomography (OCT) have led to higher-speed sources that support imaging over longer depth ranges. Limitations in the bandwidth of state-of-the-art acquisition electronics, however, prevent adoption of these advances into clinical applications. This thesis introduces optical-domain subsampling as a method for increasing the imaging range while reducing the acquisition bandwidth. Optically subsampled lasers utilize a discrete set of wavelengths to alias fringe signals along an extended depth range into a bandwidth limited window. By detecting the complex fringe signals and under the assumption of a depth-constrained signal, optical domain subsampling enables recovery of the depth-resolved scattering signal without overlapping artifacts. Key principles behind subsampled imaging will be discussed, as well as the design criteria for an experimental subsampled laser. A description of the laser, interferometer, data acquisition system, and signal processing steps is given, and the results of point spread functions compressed into a baseband window are presented. Images that were taken with the subsampled OCT system and a wide-field microscope show that this imaging scheme is viable in vivo and can advantageously image samples that span a long depth range.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013. Cataloged from PDF version of thesis. Includes bibliographical references (p. 97-100).
Date issued
2013Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.