MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Model-based compressive sensing with Earth Mover's Distance constraints

Author(s)
Schmidt. Ludwig, Ph. D. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (3.077Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.
Advisor
Piotr Indyk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In compressive sensing, we want to recover ... from linear measurements of the form ... describes the measurement process. Standard results in compressive sensing show that it is possible to exactly recover the signal x from only m ... measurements for certain types of matrices. Model-based compressive sensing reduces the number of measurements even further by limiting the supports of x to a subset of the ... possible supports. Such a family of supports is called a structured sparsity model. In this thesis, we introduce a structured sparsity model for two-dimensional signals that have similar support in neighboring columns. We quantify the change in support between neighboring columns with the Earth Mover's Distance (EMD), which measures both how many elements of the support change and how far the supported elements move. We prove that for a reasonable limit on the EMD between adjacent columns, we can recover signals in our model from only ... measurements, where w is the width of the signal. This is an asymptotic improvement over the ... bound in standard compressive sensing. While developing the algorithmic tools for our proposed structured sparsity model, we also extend the model-based compressed sensing framework. In order to use a structured sparsity model in compressive sensing, we need a model projection algorithm that, given an arbitrary signal x, returns the best approximation in the model. We relax this constraint and develop a variant of IHT, an existing sparse recovery algorithm, that works with approximate model projection algorithms.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 71-72).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82391
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.