Show simple item record

dc.contributor.advisorAsuman Ozdaglar and Devavrat Shah.en_US
dc.contributor.authorLee, Christina (Christina Esther)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:19:36Z
dc.date.available2013-11-18T19:19:36Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82410
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 89-93).en_US
dc.description.abstractComputing stationary probabilities of states in a large countable state space Markov Chain (MC) has become central to many modern scientific disciplines, whether in statistical inference problems, or in network analyses. Standard methods involve large matrix multiplications as in power iterations, or long simulations of random walks to sample states from the stationary distribution, as in Markov Chain Monte Carlo (MCMC). However, these approaches lack clear guarantees for convergence rates in the general setting. When the state space is prohibitively large, even algorithms that scale linearly in the size of the state space and require computation on behalf of every node in the state space are too expensive. In this thesis, we set out to address this outstanding challenge of computing the stationary probability of a given state in a Markov chain locally, efficiently, and with provable performance guarantees. We provide a novel algorithm, that answers whether a given state has stationary probability smaller or larger than a given value [delta] [epsilon] (0, 1). Our algorithm accesses only a local neighborhood of the given state of interest, with respect to the graph induced between states of the Markov chain through its transitions. The algorithm can be viewed as a truncated Monte Carlo method. We provide correctness and convergence rate guarantees for this method that highlight the dependence on the truncation threshold and the mixing properties of the graph. Simulation results complementing our theoretical guarantees suggest that this method is effective when our interest is in finding states with high stationary probability.en_US
dc.description.statementofresponsibilityby Christina Lee.en_US
dc.format.extent93 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleComputing stationary distribution locallyen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862113214en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record