Show simple item record

dc.contributor.advisorRegina Barzilay.en_US
dc.contributor.authorLei, Tao, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:19:52Z
dc.date.available2013-11-18T19:19:52Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82412
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 54-60).en_US
dc.description.abstractThis thesis addresses the language grounding problem at the level of word relation extraction. We propose methods to acquire knowledge represented in the form of relations and utilize them in two domain applications, high-level planning in a complex virtual world and input parser generation from input format specifications. In the first application, we propose a reinforcement learning framework to jointly learn to predict precondition relations from text and to perform high-level planning guided by those relations. When applied to a complex virtual world and text describing that world, our relation extraction technique performs on par with a supervised baseline, and we show that a high-level planner utilizing these extracted relations significantly outperforms a strong, text unaware baseline. In the second application, we use a sampling framework to predict relation trees and to generate input parser code from those trees. Our results show that our approach outperforms a state-of-the-art semantic parser on a dataset of input format specifications from the ACM International Collegiate Programming Contest, which were written in English for humans with no intention of providing support for automated processing.en_US
dc.description.statementofresponsibilityby Tao Lei.en_US
dc.format.extent60 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleDomain knowledge acquisition via language groundingen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862113579en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record