MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Bayesian approach to feed reconstruction

Author(s)
Conjeevaram Krishnakumar, Naveen Kartik
Thumbnail
DownloadFull printable version (6.085Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Youssef M. Marzouk.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we developed a Bayesian approach to estimate the detailed composition of an unknown feedstock in a chemical plant by combining information from a few bulk measurements of the feedstock in the plant along with some detailed composition information of a similar feedstock that was measured in a laboratory. The complexity of the Bayesian model combined with the simplex-type constraints on the weight fractions makes it difficult to sample from the resulting high-dimensional posterior distribution. We reviewed and implemented different algorithms to generate samples from this posterior that satisfy the given constraints. We tested our approach on a data set from a plant.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 83-86).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82414
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.