MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Undergraduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time RBS analysis of plasma erosion in DIONISOS

Author(s)
Peterson, Ethan E. (Ethan Eric)
Thumbnail
DownloadFull printable version (6.957Mb)
Alternative title
Real-time Rutherford backscattering spectroscopy analysis of plasma erosion in DIONISOS
Other Contributors
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering.
Advisor
Dennis G. Whyte.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
One of the primary scientific challenges still facing the development of commercial nuclear fusion reactors lies at the plasma-material boundary. Plasma temperatures greater than 10 million degrees Celsius (10 keV) require clever magnetic field configurations to confine the plasma near the center of the toroid. However, the materials directly surrounding the plasma, known as the first wall, will be in contact with a cooler plasma, closer to 5 eV, and must be able to withstand intense neutron radiation as well as high heat fluxes. It is still unclear how some proposed first wall materials such as tungsten and molybdenum will behave in environments with these plasmas. Scientists must provide evidence supporting the lifetime, fuel retention capabilities, and neutron resilience of these materials in order to assure their high quality performance inside fusion reactors for many years. As a result, scientists must better understand how plasmas interact with surfaces of materials. This project contributes to this endeavor by studying plasma erosion in real-time using a helicon plasma source and an ion beam analysis technique known as Rutherford backscattering spectroscopy (RBS) to determine target thickness and composition. Copper coated aluminum targets were subjected to helium plasmas of varying fluxes and ion energies and were analyzed in real-time with RBS to determine the copper layer thickness as a function of time. This analysis will provide the frame work for studying fusion materials such as molybdenum and tungsten in the same way using hydrogenic plasmas. It is expected that the erosion rate will be proportional to the ion flux (a function of plasma density) and the sputtering yield (a function of ion energy), while being inversely proportional to the target density. The goal will be to develop a reliable method to characterize plasma regimes with reproduceable, well-behaved flux profiles and use them to controllably erode samples, while performing real-time RBS analysis of the surface layer.
Description
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 55-57).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82448
Department
Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Nuclear Science and Engineering.

Collections
  • Undergraduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.