Show simple item record

dc.contributor.advisorEytan Modiano.en_US
dc.contributor.authorKuperman, Gregoryen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2013-11-18T20:39:38Z
dc.date.available2013-11-18T20:39:38Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82471
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.en_US
dc.descriptionThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from department-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 167-174).en_US
dc.description.abstractWith the increasing importance of communication networks comes an increasing need to protect against network failures. Traditional network protection has been an "all-or-nothing" approach: after any failure, all network traffic is restored. Due to the cost of providing this full protection, many network operators opt to not provide protection whatsoever. This is especially true in wireless networks, where reserving scarce resources for protection is often too costly. Furthermore, network protection often does not come with guarantees on recovery time, which becomes increasingly important with the widespread use of real-time applications that cannot tolerate long disruptions. This thesis investigates providing protection for mesh networks under a variety of service guarantees, offering significant resource savings over traditional protection schemes. First, we develop a network protection scheme that guarantees a quantifiable minimum grade of service upon a failure within the network. Our scheme guarantees that a fraction q of each demand remains after any single-link failure, at a fraction of the resources required for full protection. We develop both a linear program and algorithms to find the minimum-cost capacity allocation to meet both demand and protection requirements. Subsequently, we develop a novel network protection scheme that provides guarantees on both the fraction of time a flow has full connectivity, as well as a quantifiable minimum grade of service during downtimes. In particular, a flow can be below the full demand for at most a maximum fraction of time; then, it must still support at least a fraction q of the full demand. This is in contrast to current protection schemes that offer either availability-guarantees with no bandwidth guarantees during the down-time, or full protection schemes that offer 100% availability after a single link failure. We show that the multiple availability guaranteed problem is NP-Hard, and develop solutions using both a mixed integer linear program and heuristic algorithms. Next, we consider the problem of providing resource-efficient network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent "recovery domains", where within each domain, the maximum amount of time to recover from a failure is guaranteed. Finally, we study the problem of providing protection against failures in wireless networks subject to interference constraints. Typically, protection in wired networks is provided through the provisioning of backup paths. This approach has not been previously considered in the wireless setting due to the prohibitive cost of backup capacity. However, we show that in the presence of interference, protection can often be provided with no loss in throughput. This is due to the fact that after a failure, links that previously interfered with the failed link can be activated, thus leading to a "recapturing" of some of the lost capacity. We provide both an ILP formulation for the optimal solution, as well as algorithms that perform close to optimal.en_US
dc.description.statementofresponsibilityby Gregory Kuperman.en_US
dc.format.extent174 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleNetwork protection with service guaranteesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc862119271en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record