Show simple item record

dc.contributor.advisorRaúl Radovitzky.en_US
dc.contributor.authorNyein, Michelle K. (Michelle Kyaw)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Aeronautics and Astronautics.en_US
dc.date.accessioned2013-11-18T20:39:58Z
dc.date.available2013-11-18T20:39:58Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82474
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.en_US
dc.descriptionThis electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.en_US
dc.descriptionCataloged from department-submitted PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 155-167).en_US
dc.description.abstractSince the beginning of the military conflicts in Iraq and Afghanistan, there have been over 250,000 diagnoses of traumatic brain injury (TBI) in the U.S. military, with the majority of incidents caused by improvised explosive devices (IEDs). Despite the urgent need to understand blast-induced TBI in order to devise strategies for protection and treatment, much remains unknown about the mechanism of injury, the effects of personal protective equipment (PPE) such as helmets, and injury metrics and thresholds. In order to help address these gaps, this thesis has four objectives: 1) to present a comprehensive computational framework for investigating the mechanical response of the human head to blasts that includes blast-structure interaction codes, a detailed, three-dimensional model of a human head generated from high-resolution medical imaging data, and an experimentally-validated constitutive model for brain tissue; 2) to validate the framework against a broad range of experiments, including free-field blast tests involving physical human head surrogates and laboratory-scale shock tube tests involving animals and human cadavers; 3) to use the computational framework to investigate the effect of PPE on the propagation of stress waves within the brain following blast events and evaluate their blast protection performance; and 4) to develop interspecies scaling laws for the blast response of the brain that would allow translation of injury metrics from animals to humans.en_US
dc.description.statementofresponsibilityby Michelle K. Nyein.en_US
dc.format.extent167 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.titleComputational modeling of primary blast effects on the human brainen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.identifier.oclc862120668en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record