MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mission design for safe traverse of planetary hoppers

Author(s)
Cohanim, Babak, 1980-
Thumbnail
DownloadFull printable version (3.812Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics.
Advisor
Jeffrey A. Hoffman.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Planetary hoppers are a new class of vehicle being developed that will provide planetary surface mobility by reusing the landing platform and its actuators to propulsively ascend, translate, and descend to new landing points on the surface of a planetary body. Hoppers enhance regional exploration, with the capability of rapid traverse over hundreds to thousands of meters, traverse over hazardous terrain, and exploration of cliffs and craters. These planetary mobility vehicles are fuel limited and as a result are enabled by carrying sensor payloads that require low mass, low volume, and low onboard computational resources. This thesis describes methods for hoppers to traverse and land safely in this constrained environment. The key questions of this research are: - What types of missions will hoppers perform and how does a hopper traverse as part of these missions? - How does a hopper traverse from its current location to a new landing site safely? This thesis: - describes various hopper mission scenarios and considerations for their mission designs. - creates an operational concept for safe landing for the traverse hop mission scenario. - develops a method that can be used to rapidly and safely detect landing areas at long ranges and low path angles. - develops a method to do fine detection of hazards once at the landing area.
Description
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2013.
 
This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from department-submitted PDF version of thesis.
 
Includes bibliographical references (p. 116-125).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82476
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.