MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Finite element modeling of flow through ceramic pot filters

Author(s)
Kelly, Anna C
Thumbnail
DownloadFull printable version (6.647Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
Peter Shanahan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Pure Home Water (PHW) is an organization based in Tamale, Ghana that manufactures and distributes ceramic water filters. While many ceramic filter factories manufacture flowerpot-shaped filters, PHW has transitioned from the flowerpot shape, to a paraboloid shape, and finally to a hemispheric filter shape. The PHW factory conducts flow-rate testing as part of their quality control process and has documented a wide range of flow rates for the hemispheric filter as compared to the global standard. This thesis uses finite-element groundwater-flow modeling software to develop models of flow through three different ceramic filter shapes: flowerpot, paraboloid, and hemispheric filters. A sensitivity analysis was then conducted for each filter shape by simulating flow through the filter for a range of hydraulic conductivities. It was found that the hemispheric filter shape produces a higher flow rate than the flowerpot filter for a given hydraulic conductivity, and that the flow rate through the hemispheric filter is more sensitive to changes in hydraulic conductivity.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 54-55).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82817
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.