MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrologic and hydraulic assessment of artificial recharge in the Sparta Aquifer of Union County, Arkansas

Author(s)
Sowby, Robert B
Thumbnail
DownloadFull printable version (24.95Mb)
Other Contributors
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering.
Advisor
David E. Langseth.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Groundwater pumping from the Sparta aquifer in Union County, Arkansas, has long exceeded natural recharge, threatening the regional water supply. An alternative water-supply project, completed in 2004, now provides treated surfacewater to local industries. This conjunctive use of surface- and groundwater has allowed the Sparta aquifer to recover somewhat. Exploring further possibilities for Union County, the author has evaluated the potential of artificial recharge by well injection. A MODFLOW groundwater model was modified to simulate the aquifer's response. to artificial recharge. Results indicate that artificial recharge in this context is impractical. Injection increases hydraulic heads only locally, with the most improvement occurring where the injection is located in an existing cone of depression in El Dorado, Arkansas. Since groundwater withdrawals are already concentrated in this area, injection only reduces the net withdrawal rate. The same result could be achieved by reducing or substituting groundwater withdrawals directly, as has been observed since the completion of the alternative-supply project. The modeling results, along with analyses of surfacewater resources, suggest that continued and expanded conjunctive use is the most viable water-management strategy in Union County.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, 2013.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (pages 42-46).
 
Date issued
2013
URI
http://hdl.handle.net/1721.1/82826
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.